
A Meshless Local Petrov-Galerkin Method for Euler-Bernoulli Beam

Problems

I. S. eaju 1and D. R. Phillips 2

NASA Langley Research Center, Hampton, Virginia

Summary

An accurate and yet simple Meshless Local Petrov-Galerkin (MLPG) formulation for analyzing

beam problems is presented. In the formulation, simple weight functions are chosen as test functions.

The use of these functions shows that the weak form can be integrated with conventional Gaussian

integration. The MLPG method was evaluated by applying the formulation to a variety of patch test

and thin beam problems. The formulation successfully reproduced exact solutions to machine accuracy

when test functions with C 2 continuity and an appropriate order of basis functions are used.

Introduction

Meshless methods are increasingly being viewed as an alternative to the fmite element method [1-

3]. Recently, a meshless Galerkin formulation was presented for beam (C 1) problems using a

generalized moving least squares (MLS) interpolant [2]. In this Galerkin formulation, the derivatives of

the weight functions used in the trial and test functions higher than the second order showed

discontinuities (scissors) at the boundaries of the supports of the local sub-domains. Conventional

Gaussian and other integration schemes were found to be inadequate to integrate the weak form

accurately very accurate and elaborate integration schemes were needed.

In this paper an accurate and simple alternative Petrov-Galerkin formulation for beam problems is

presented. In the present Petrov-Galerkin method simple weight functions are chosen as test functions

and conventional Gaussian integration is used. The effectiveness of the MLPG method is evaluated by

applying the formulation to a variety of patch test problems.

Development of the Petrov-Galerkin Formulation

The notation of reference 2 is used in this paper for brevity and convenience in presentation. The

MLPG equations are

K(node) . T (bdy) . _(node) _ f_bdy)i a+l_i a-i_ =0 (1)

where

....} (2)

are the fictitious nodal values of deflections u and slopes 0, and the matrices in Eq. (1) are defmed as in

Eq. 35-36(g) of reference 2.

1
Head, Analytical and Computational Methods Branch, NASA Langley Research Center

2 Joint Institute for Advancement of Flight Sciences George Washington University, performed under grant NCC 1-384.



The MLPG equations are derived using a weighted residual weak form of the governing equations.

The trial functions used for beam problems are derived using the generalized MLS interpolation [2] as

u(x)=Ni_=l(_ilff_U)(x)+Oilff}°)(x)) (3)

where

(u)
ly i (x)= ___pj(x)[A-1pTw]ji

j=l

m -1 T
Iff}°)(x)= _,pj(x)[A Pxw]j i (4)

j=l

with

[A]= pTwp+pTwp x . (s)

In Eq. (5) P is an (n,m) matrix and w is an (n,n) matrix defined as

[P]= [ p(xl) p(x2) p(xn) ] T.... (6)

w = [w_(y)

1
w 2 (2) | (7)

Jw_(2)

where Y = x - x i , and

2 xm-1 ]pT(x)= 1, X, X ..... (Sa)

T dp T (x)

Px(X)- dx -[0, 1, 2x .... (m-1)x m-2 ] (8b)

with (m-l) as the order of the basis function p(x) used in the MLS approximation. Three different

weight functions w i (Y) are considered:

! if IIx-x, ll<_R_

1- (x-xi) 2 /R 2 ]o_
Wi (_,) =

if [[x-xi[[> R i

(9)

with a = 2, 3, and 4. Note that the extent of the influence of the trial function is controlled by distance

Ri.



Several different test functions v&) are considered:

vi(x)=l!l-(x-xi)2/R2°]13 ifif ]]x]]X-Xi]]<-R°-X i ]] > R o
(10)

wi_fi 2,3, and4,

110 (d_oo / 2 (d_oo / 3

vi(x)= -3 +2 if O<_d i <R o

if d i >_R o

(11)

withd_ Ilx x_ll, and

110 (d_oo/2 (d_oo/3 (d_-o/4

vi(x)= -6 +8 -3 if O<d i<R o

if d i >_R o

(12)

The derivatives of the test functions are evaluated at the center (d_/Ro 0) and at the end points

(d_/eo 1) as

omo

) a ml ( d.

di
=0 =0 • m 0>1 and 7_7-m vi] "'1 =1]=0 • m 1>1V i -- , -- , --

OX m° R o OX 1 _Ro )

(13)

The test functions are then C continuous up to the order 5' where 5' = min(mo, ml) (See reference 4, pp.
63-64). With these definitions, the test functions in Eq. (10) with fi = 2, 3, and 4 are C 1, C 1, and C 3

continuous, respectively. Similarly, the spline functions in Eqs. (11) and (12) are C 1 continuous. Note

that the lengths R, and Ro in Eqs. 9-12 are user defined in the MLPG method.

As the test functions chosen (Eqs. 10-12) are not the same as the trial functions, the current

implementation is a Petrov-Galerkin method. This is in contrast to reference 2 where a Galerkin

method was used. The Galerkin method led to discontinuities (scissors) at the boundaries of the

supports of the trial functions. Due to these scissors, elaborate numerical integration schemes were

needed to integrate the weak form accurately. The domain of dependence f2s was subdivided into

subregions depending on the ends of the support domains of various trial functions. A 10-point

Gaussian quadrature was used in each of these subregions to integrate the weak from accurately. In the

current implementation with the Petrov-Galerkin test functions, the integrands were examined and no

discontinuities were found in the domain of integration. A single domain for the entire compact

support domain (f2s) was used. A standard 8-point Gaussian quadrature rule was found to be sufficient

to integrate the weak form very accurately.



Beam Configurations and Models

A beam of constant flexural rigidity EI and a length of 41 is considered. Six models with 5, 9, 17,

33, 65, and 129 nodes uniformly distributed along the length of the beam are considered. Figure 1

shows a typical 17-node model. The distances between the nodes (Aft) in these models are 1.0, 0.5,

0.25, 0.125, 0.0625, and 0.03125, respectively for the 5-, 9-, 17-, 33-, 65-, and 129-node models. Three

types of basis functions, quadratic basis (1, x, x:), cubic basis (1, x, x 2, xS), and quartic basis

(1, x, x:, x s, S) are used. The local coordinate approach of reference 5 is used in evaluating the shape

functions and their derivatives. System matrices in Eq. (1) are developed with these parameters.

X

I =
1 2 3 15 17

Figure 1: A 17-node model of the beam

Numerical Evaluations

The current MLPG formulation was evaluated by applying the formulation to simple patch-test

problems. Three typical problems were considered.

1. u(x)=co, o= dU =o ; Rigidbodytranslation
dx

2. u(x)=clx, O=c 1 ; Rigidbodyrotation (14)
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3. u(x) = c2x , 0 = 2c2x ; Constant - curvature condition

All three of these problems satisfy the governing differential equation exactly and as such are exact

solutions. The deflection u and the slope 0 corresponding to problems 1, 2, and 3 were prescribed as

essential boundary conditions (EBCs) at x 0 and x 41. With these EBCs, the beam problem was

solved using the MLPG method in Eq. (1). When (Ro/1 2A) and (R_/1 8A) were used, each of the

5-, 9-, 17-, 33-, 65-, and 129-node models reproduced exact solutions at all internal nodes to machine

accuracy thus "passing" the patch tests. The analysis was repeated with each of the test functions in

Eqs. (10-12), and the MLPG algorithm passed the patch tests for all cases.

As mentioned previously, the parameters (Ro / 1) and (R_ //) in the MLPG method are user-

controlled. The previously mentioned lengths (Ro/1 2A) and (R_/1 8A) were used at all nodes of

an N-node model, except at node 2 and node N-1 (see Figure 2). For these nodes (Ro/1 A) was used

to ensure a symmetric _2s. Note that with these assignments of (Ro / l) the test functions for all interior

nodes have symmetric _2s configurations. As shown in Figure 2, no asymmetry is introduced at nodes 1

and N as exactly half of their test functions are used. When these symmetries were violated, the MLPG

method failed the patch tests.

As the models are refined, the value of (Aft) decreases and thus the size of _2_ and the extent of the

trial functions also decrease. For finer models, i.e. for the 33-, 65-, and 129-node models, when

8A < R i/1 < 16A the MLPG method yielded very accurate results. However, when R_ /1 > 16A the

MLPG method failed the patch tests for these models. When R_ / 1 > 16A the trial function is too



diffusedandthesizeoff2s(Ro/1 2A)istoosmallincomparisonto(R_//). The combination of small

f2s size and large (R_ //) are apparently incompatible. While the finer models performed well over a

large range of (R_ //), the coarser models performed well in a much smaller range of (R_ //). For good

performance, (R_//) needed to be around 8A but less than

3

98% of the total beam length.
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(a) f2s for nodes the 1st, jth and Nth nodes
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(b) f2s for nodes the 2nd and (N 1)st nodes

Figure 2: f2s definilions for various nodes

The MLPG method was applied to beam problems with mixed boundary conditions. The first

problem considered was a cantilever beam with a concentrated moment at the flee end (i.e. M Mo at x

4/). The exact solution for this problem is u MS / 2EI and 0 MoX / EI. For all trail functions

considered, the MLPG algorithm reproduced the exact solution when the test functions in Eq. (10) with

fi 3 and 4 and when the 4-term spline function in Eq. (12) were used. In contrast, the algorithm failed

to reproduce the exact solution when the test function in Eq. (10) with fi 2 and the 3-term spline

function of Eq. (11) were used. This example suggests that test functions with at least C 1 continuity

and with ml > 2 (see Eq. 13) are required for the MLPG algorithm for beam problems.

The second problem considered was a cantilever beam with a tip load. Since the exact solution for

this problem is a cubic in terms of the x-coordinate of the beam, all sLx models with cubic basis

functions and a test function with C 1 continuity and with m 1 _>2 reproduced the exact solution to

machine accuracy.

The third problem considered was a simply supported beam subjected to a uniformly distributed

load. Using symmetry, half of the beam was modeled. Since the exact solution for this problem is

quartic in terms of the x-coordinate of the beam, the MLPG method with a cubic basis function did not

reproduce the exact solution. Error norms defined as

g 2 2

were computed at g uniformly spaced points along the beam. A value ofg 200 was used. The norms

IIE_II2and IIEMII2are presented in Table 1. The numbers in Table 1 were computed using a 20-point

Gaussian in each of the single compact support domains f2_. As expected, all models yielded accurate



solutions(within4%foru,0, and M). When the order of the basis function was increased to quartic,

the MLPG method reproduced the exact solutions (for u, 0, M, and V) to machine accuracy.

Table 1: Error norm IIEII2for a simply supported beam subjected to a uniformly distributed load

with cubic basis used in the MLPG method. (Trial function using Eq. (9) with a=3 and test
function of Eq.(10) with j3=4.)

Number of nodes in the model

Error norm 5" 9" 17 33 65 129

0.1662e-1 0.1306e-2 0.4573e-2 0.3829e-1 0.1742e-1 0.2368e-1

IIEMII 
* Ri/1 3.9

0.2774e+0 0.1057e-1 0.1704e-1 0.3680e-1 0.1763e-1 0.2340e-1

The above problem demonstrates the following phenomena. When the order of the basis function

equals the order of the exact solution, the previously stated 8-point Gaussian in a single f2s is sufficient

to integrate the weak form very accurately. When the order of the basis function is less than the order

of the exact solution, a higher order integration rule (such as a 20-point Gaussian) is needed to obtain

accurate results. Note that a 20-point Gaussian in a domain f2s is preferable over the sub-domain

integration required in the Galerkin formulation.

Concluding Remarks

This paper presents an accurate and yet a simple Petrov-Galerkin formulation for solving beam

problems. In the formulation, simple weight functions are chosen as test functions. These test functions

must have at least C 1continuity and zero first and second derivatives at the end points for the algorithm

to pass the patch tests. When appropriate test functions are used, the weak form can be integrated with

conventional Gaussian integration. The MLPG method was evaluated by applying the formulation to a

variety of patch tests. Weight functions used to develop the trial functions need not have C 1continuity;

C o continuity may be sufficient. Additionally, the weak form requires at least a quadratic basis, and a

cubic basis function is preferable. The formulation successfully reproduced exact solutions to machine

accuracy for thin beam problems when an appropriate order of basis function was used for all
combinations of trial and C 1continuous test functions considered.
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